Wikipedia

Search results

Monday, 25 January 2016

Dinamika Gempabumi

Pengantar
Gempa bumi didefinisikan sebagai getaran yang bersifat alamiah, yang terjadi pada lokasi tertentu, dan sifatnya tidak berkelanjutan. Getaran pada bumi terjadi akibat dari adanya proses pergeseran secara tiba-tiba (sudden slip) pada kerak bumi. Pergeseran secara tiba-tiba terjadi karena adanya sumber gaya (force) sebagai penyebabnya, baik bersumber dari alam maupun dari bantuan manusia (artificial earthquakes). Selain disebabkan oleh sudden slip, getaran pada bumi juga bisa disebabkan oleh gejala lain yang sifatnya lebih halus atau berupa getaran kecil-kecil yang sulit dirasakan manusia.
Getaran tersebut misalnya yang disebabkan oleh lalu-lintas, mobil, kereta api, tiupan angin pada pohon dan lain-lain. Getaran seperti ini dikelompokan sebagai mikroseismisitas (getaran sangat kecil). Dimana tempat biasa terjadinya gempa bumi alamiah yang cukup besar, berdasarkan hasil penelitian, para peneliti kebumian menyimpulkan bahwa hampir 95 persen lebih gempa bumi terjadi di daerah batas pertemuan antar lempeng yang menyusun kerak bumi dan di daerah sesar atau fault. Gempa bumi tidak lain merupakan manifestasi dari getaran lapisan batuan yang patah yang energinya menjalar melalui badan dan permukaan bumi berupa gelombang seismik. Energi yang dilepaskan pada saat terjadinya patahan tersebut dapat berupa energi deformasi, energi gelombang dan lain-lain. Energi deformasi ini dapat terlihat pada perubahan bentuk sesudah terjadinya patahan, misalnya pergeseran

Teori yang menjelaskan mekanisme terjadinya gempa bumi yang dikenal sebagai “Elastic Rebound Theory”. Dijelaskan dalam teori ini bahwa gempa bumi terjadi pada daerah deformasi dimana terdapat dua buah gaya yang bekerja dengan arah berlawanan pada batuan kulit bumi. Energi yang tersimpan selama proses deformasi berbentuk elastis strain dan akan terakumulasi sampai melampui daya dukung batas maksimum batuan, hingga akhirnya menimbulkan rekahan atau patahan.

Pada saat terjadi rekahan atau patahan tersebut energi yang tersimpan tersebut sebagian besar akan dilepaskan dalam bentuk gelombang ke segala arah baik dalam bentuk gelombang transversal maupun longitudinal. Peristiwa inilah yang disebut dengan gempa bumi. Para peneliti kebumian berkesimpulan bahwa penyebab utama terjadinya gempa bumi berawal dari adanya gaya pergerakan di dalam interior bumi (gaya konveksi mantel) yang menekan kerak bumi (outer layer) yang bersifat rapuh, sehingga ketika kerak bumi tidak lagi kuat dalam merespon gaya gerak dari dalam bumi tersebut maka akan membuat sesar dan menghasilkan gempa bumi. Akibat gaya gerak dari dalam bumi ini maka kerak bumi telah terbagi-bagi menjadi beberapa fragmen yang di sebut lempeng (Plate). Gaya gerak penyebab gempa bumi ini selanjutnya disebut gaya sumber tektonik (tectonic source). Selain sumber tektonik yang menjadi faktor penyebab terjadinya gempa bumi, terdapat beberapa sumber lainnya yang dikategorikan sebagai penyebab terjadinya gempa bumi, yaitu sumber non-tektonik (non-tectonic source) dan gempa buatan (artificial earthquake).
Selain gempa bumi, pergerakan antar lempang juga menimbulkan adaya patahan-patahan kecil yang disebut dengan sesar. Sesar adalah struktur rekahan yang telah mengalami pergeseran. Umumnya disertai oleh struktur yang lain seperti lipatan, rekahan dsb. Berdasarkan pergeserannya, struktur sesar dalam geologi dikenal ada 3 jenis, yaitu: 1). Sesar Mendatar (Strike slip faults) ; 2). Sesar Naik (Thrust faults) ; 3). Sesar Turun (Normal faults).

Stress Fields of Earthquakes
Gaya tektonik secara kontinu akan menekan, menarik, melengkungkan dan mematahkan batuan di litosfer. Tegangan (Stress) merupakan gaya yang diberikan atau dikenakan pada suatu medan atau area. Tegangan terbagi menjadi tegangan seragam (uniform stress) yaitu gaya yang bekerja pada suatu materi sama atau seragam di semua arah, dan tegangan diferensial atau tegangan dengan gaya yang bekerja tidak sama di setiap arah. Tegangan diferensial terbagi menjadi tensional stress, compressional stress, dan  shear stress.

Perhatikan gambar 15.5 pada keadaan I menunjukan suatu lapisan yang belum terjadi deformasi. Karena di dalam bumi terjadi gerakan yang terus-menerus, maka akan terdapat stress yang lama kelamaan akan terakumulasi dan mampu menyebabkan deformasi pada lapisan batuan. Keadaan II menunjukan suatu lapisan batuan telah mendapat dan mengandung stress dimana telah terjadi perubahan bentuk geologi. Untuk daerah A mendapat stress ke atas, sedang daerah B mendapat stress ke bawah. Proses ini berjalan terus sampai stress yang terjadi atau dikandung di daerah ini cukup besar untuk merubahnya menjadi gesekan antara daerah A dan daerah B. Lama kelamaan karena lapisan batuan sudah tidak mampu lagi untuk menahan stress maka akan terjadi suatu pergerakan atau perpindahan yang tiba-tiba sehingga terjadilah patahan. Peristiwa pergerakan secara tiba-tiba ini disebut gempa bumi. Keadaan III menunjukan lapisan batuan yang sudah patah karena adanya pergerakan yang tiba-tiba dari batuan tersebut. Gerakan perlahan-lahan sesar ini akan berjalan terus sehingga seluruh proses diatas akan diulangi lagi dan sebuah gempa akan terjadi lagi setelah beberapa waktu lamanya demikian seterusnya.
Ketika suatu batuan dikenakan tekanan dengan besar tertentu, maka batuan itu akan mengalami tiga tahap deformasi, yaitu :
a.      Elastic Deformation
Merupakan deformasi sementara tidak permanen atau dapat kembali kebentuk awal (reversible). Begitu stress hilang, batuan kembali kebentuk dan volume semula. Seperti karet yang ditarik akan melar tetapi jika dilepas akan kembali ke panjang semula. Elastisitas ini ada batasnya yang disebut elastic limit, yang apabila dilampaui batuan tidak akan kembali pada kondisi awal. Di alam tidak pernah dijumpai batuan yang pernah mengalami deformasi elastis ini, karena tidak meninggalkan jejak atau bekas, karena kembali ke keadaan semula, baik bentuk maupun volumenya. Sir Robert Hooke (1635-1703) adalah orang pertama yang memperlihatkan hubungan antara stress dan strain yang sesuai dengan batuan Hukum Hooke mengatakan sebelum melampaui batas elastisitasnya hubungan stress dan strain suatu material adalah linier.
b.      Ductile deformation 
Merupakan deformasi dimana elastic limit dilampaui dan perubahan bentuk dan volume batuan tidak kembali. Untuk mempermudah membayangkannya lihat diagram strain stress pada gambar 15.6 yang didapat dari percobaan menekan contoh batuan silindris. Mula-mula kurva stess-strain naik tajam sepanjang daerah elastis sesampai pada elastic limit (Z), kurvanya mendatar. Penambahan stress menyebabkan deformasi ducktile. Bila stress dihentikan pada titik X silinder kembali sedikit kearah semula. Strain menurun sepanjang kurva X!Y. Strain permanennya adalah XY yang merupakan deformasi ductile.
c.       Fracture
Tejadi apabila batas atau limit elastik dan ducktile deformasi dilampaui. Perhatikan Gambar 15.6 yang semula stress dihentikan pada X!, disini dilanjutkan menaikkan stress. Kurva stress-strain berlanjut sampai titik F dan batuan pecah melalui rekahan. Deformasi rekah (fracture deformation) dan lentur (ductile deformation) adalah sama, menghasilkan regangan (strain) yang tidak kembali ke kondisi semula.






No comments:

Post a Comment